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Abstract  

Closed-cell aluminum foam, offers a unique combination of properties such as low 
density, high stiffness, strength, and energy absorption that can be tailored through 
design of the microstructure. During ballistic impact, the foam exhibits significant 
nonlinear deformation and stress-wave attenuation. Composite structural armor panels 
containing closed-cell aluminum foam are impacted with 20-mm fragment-simulating 
projectiles (FSP). One-dimensional plane strain finite element analysis (FEA) of stress- 
wave propagation is performed to understand the dynamic response and deformation 
mechanisms. The FEA results correlate well with the experimental observation that 
aluminum foam can delay and attenuate stress waves. It is identified that the 
aluminum foam transmits an insignificant amount of stress pulse before complete 
densification. The ballistic performance of aluminum foam-based composite integral 
armor is compared with the base-line integral armor of equivalent areal density by 
impacting panels with 20-mm FSP. A comparative damage study reveals that the 
aluminum-foam armor has better and finer ceramic fracture and less volumetric 
delamination of the composite backing plate as compared to the base line. The 
aluminum-foam armors also showed less dynamic deflection of the backing plate than 
the base line. These attributes of the aluminum foam in integral armor system add a 
new dimension in the design of lightweight armor for the future armored vehicles. 
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1.   Introduction 

The U.S. Army has established and documented requirements for lightweight 
structural armors that exhibit significant advancements in the integration of 
ballistic and structural performance [1]. Figure 1 depicts the historical 
development of armors for 0.50 cal. heavy machine gun threat demonstrating 
continuous improvements; yet, significant challenges exist in further reducing 
the areal density by half. Such a reduction in armor weight requires the 
integration of new materials, improved understanding of stress-wave 
propagation at dissimilar material interfaces, optimization of multiple competing 
performance metrics, and innovative armor concepts. 
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Figure 1. Historical development of composite integral armor. 

Future 

One successful composite integral armor (CIA) developed by United Defense 
Limited Partnership (UDLP) for the U.S. Army is a hybrid material system 
consisting of a ceramic strike face, a thin rubber layer, and an S-2 glass-based 
composite backing plate (Figure 2) [2]. This armor is required to provide ballistic 
protection and structural integrity at minimal areal density. Most CIA 
configurations utilize a rubber layer between the ceramic-tile layer and the 
composite-backing plate to increase the armor's multihit capability and 
structural damage tolerance [3,4]. Experimental evidence shows that an increase 
in rubber layer thickness decreases the dynamic deflection of the composite 
backing plate [5]. One-dimensional numerical stress-wave experiments revealed 
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Figure 2. Components of integral armor structure. 

that rubber delays the stress wave transfer and reduces the amplitude of 
transmitted stress wave to the backing plate [5]. The experimental and 
numerical results point to the importance of managing stress-wave propagation 
in CIA during ballistic impact. However, rubber is a compliant material and 
reduces the structural stiffness of the armor. Hence, an optimal rubber-layer 
thickness that balances the ballistic and structural performance at minimal 
weight should be determined to meet the specific mission requirements for a 
vehicle. Closed-cell aluminum foam is an alternative material to the rubber layer 
that has the potential to improve structural stiffness and ballistic properties. In 
the present study, we describe the stress-wave experiment through closed-cell 
aluminum foam, numerical stress-wave propagation models, design concepts, 
manufacturing and ballistic testing of a new generation of CIA. 

2.   Closed-Cell Aluminum Foam and Stress Wave 
Experiment 

A variety of foaming processes and properties of closed-cell aluminum foam has 
been reported in the literature [6-10].    However, the foaming process via a 



powder metallurgy route produces a solid skin, which may be of interest 
especially for the surface bonding of another material, has high specific strength, 
and unique nonlinear compressive behavior [11]. Figure 3 shows the quasi-static 
engineering stress-strain behavior of such closed-cell aluminum foam of different 
densities (gm/cm3). The flow stress of the foam is a strong function of foam 
density and the stress-strain curves can be divided into three regions-linear 
elastic region, collapse region, and densification region. In region 1, the only 
deformation that occurs is elastic and is due to cell-wall bending. This is 
followed by region 2 in which plastic collapse of the first cell wall occurs and the 
stress drops. In region 3, the foam progressively collapses and densifies. It was 
observed that deformation in region 3 was highly localized and proceeded by the 
advance of a densification front from deformed to undeformed regions of the 
sample. It has also been found that such a type of aluminum foams is essentially 
strain rate independent [11-12]. Hence the quasi-static properties of aluminum 
foam presented in Figure 3 are used in our numerical simulations. 
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Figure 3. Quasi-static stress-strain behavior of closed-cell aluminum foam. Numbers on 
the figure represent foam density in gm/cm3. 

Ballistic targets with and without aluminum foam were designed and tested to 
compare the shock-wave propagation through the aluminum foam (Figures 4[a] 
and 4[b]). The target without aluminum foam had an areal-density of 161.03 
kg/m2 (32.98 psf) and the target with aluminum foam had an areal-density of 
157.75 kg/m2 (32.31 psf). High hardness steel (HHS), aluminum foam, alumina 
ceramic (AI2O3), and 7,039 aluminum plates are bonded together with a thin 
layer of fast-setting epoxy adhesive. Piezoresistant stress gages (Dynasen Model 



Mn/Cn 4-50-EK) are sandwiched between two ceramic layers to monitor the 
dynamic stress through the ceramic layer.  These gages consist of two separate 
interlaced 50-Q foil grids enclosed in a polyamide plastic film. One of the grids 
is made of manganin and is used to measure stress.   The other is made of 
constantan and is used to measure lateral strain. Both grids are 6.35-mm square 
and 0.127 mm thick.    The measured strain is used to correct the stress 
measurements. The gages are connected to a Dynasen CK-15-300 power supply 
and bridge circuit, which is triggered upon projectile impact by a "make" screen 
with a simple capacitor discharge circuit.    The signals from the gages are 
recorded on a digital oscilloscope.  Calibration and data reduction of the stress 
gage signals are performed using software described by Franz and Lawrence 
[13].    Both the targets are impacted with 20-mm FSPs at a nominal impact 
velocity of 1,067 m/s.     The stress gage measurements are presented in 
Figure 4(c).  The rise time of the signal without foam is about 1.0 us and with 
foam is about 2.0 (is. The maximum stress level attained in both the experiments 
is about 6.25 GPa.   The incorporation of 12.7-mm aluminum foam delayed the 
stress signal about 14.6 us to reach the gage location. We have developed a one- 
dimensional plane-strain finite element model of these experiments (detail of the 
model described in the following section) and have obtained about an 18.5-us 
delay in the stress-wave arrival with an impact velocity of 500 m/s (Figure 4c). 
The finite element prediction also shows a two-step rise in stress in the case of 
target with aluminum foam. The stress waves generated in the experiments are a 
combination of spherical dilatation, spherical shear, and planar shear wave 
fronts.  However, the plane-strain model only produces planar dilatation and is 
not an exact model of the experiment.   The finite element model predictions 
capture both the widening in rise time and delay in stress-wave arrival.   The 
experimental and finite element results identified two important characteristics 
of aluminum foam under stress-wave propagation: (1) aluminum foam increases 
the rise time of the propagating stress-wave, and (2) incorporation of aluminum- 
foam introduces a significant delay in stress-wave propagation.   In order to 
determine the effect of aluminum-foam thickness, a second set of experiments is 
conducted. 

The second set of stress-wave experiments deals with two ballistic targets with 
different aluminum foam thickness (12.7 mm and 30.48 mm) and is shown in 
Figure 5(a). An additional ceramic matrix composite layer (AS109, particulate 
SiC in AI2O3 matrix with a small amount of aluminum, made by Lanxide Armor 
Products) is bonded with the target described in Figure 4(b). The nominal 
impact velocity of a 20-mm FSP was 915 m/s. The projectile impact on the first 
target (Test # 1, with 12.7-mm aluminum foam) shattered the AS109 ceramic 
(Figure 5[b]), deformed the HHS plate, and densified the aluminum foam 
(Figure 5[c]).  The stress gage recorded a stress pulse with the maximum stress 
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Figure 4. Stress wave experiment with and without aluminum foam (a) target without 
aluminum foam (b) target with aluminum foam (c) response of the stress 
gages and plane strain predictions. 

amplitude of about 0.825 GPa. Impact on the second target (Test # 2, with 
39.48-mm aluminum foam) showed similar fracture of AS109 ceramic and similar 
deformation of the HHS plate. However, the aluminum foam is partially 
densified (cross-section, Figure 5[d])7 and the stress gage did not record any 
signal. The major conclusion from these two experiments is that if the foam is 
not completely densified across the entire layer thickness, it does not allow any 
measurable stress waves to pass through. The air/gas-filled cellular structure of 
the aluminum foam makes the stress-wave propagation difficult.  The cell wall 
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acts as tiny wave-guide and dispersion of stress waves takes place. The 
deformation of closed-cell foam occurs by cell-wall buckling and plastic collapse, 
which leads to localized densification. The deformation and densification 
originates from the point of applied load and propagates in the direction 
perpendicular and transverse to the applied load. Effective stress-wave 
propagation can thus only occur when the closed-cell foam is completely 
densified. If the stress wave cannot reach the backing plate until the foam is 
completely densified, then the closed-cell foam has potential to improve the 
ballistic efficiency of the armor. A detailed finite element analysis of one- 
dimensional plane-strain stress-wave propagation in multilayer foam integral 
armor is presented next. 



3.   Stress Wave Propagation in Aluminum Foam Integral 
Armor 

One-dimensional plane-strain stress-wave propagation in CIA and the effect of 
nonlinear EPDM rubber-layer thickness has been discussed by Gama et al. [5,14]. 
One-dimensional   plate   impact   produces   planar   dilatational   stress-wave 
propagation in both the projectile and target. On the other hand, the impact of a 
three-dimensional (3-D) projectile (e.g., FSP) on a multilayer-thick armor plate 
produces 3-D spherical dilatational, spherical shear, and planar shear wave 
fronts.  Since the dilatational wave speed is higher than the shear wave speed, 
the through-thickness stress-wave propagation in the impact centerline can be 
assumed planar, and our analyses are valid only in this region.   The through- 
thickness and impact direction is assumed aligned with the coordinate axis z (3), 
and the in-plane axes are denoted by x and y (1 and 2). The rubber layer of the 
integral armor is replaced with an aluminum-foam layer (Figure 6).    The 
individual layers are assumed perfectly bonded to each other. The thickness of 
the steel impact plate (5 mm), cover layer (2.54 mm), ceramic layer (17.78 mm), 
and the backing plate (14.15 mm) is kept constant throughout the analyses. The 
aluminum-foam layer thickness is varied between 12.7 mm and 25.4 mm. This 
combination of layer thicknesses represents an integral armor of areal density of 
about 97.65 kg/m2 (20 psf). Linear elastic material properties are used to model 
the impact plate, cover layer, ceramic layer, and the backing plate (Table 1). The 
aluminum-foam is modeled with the MATJHONEYCOMB material model 
within the explicit finite element code LS-DYNA 940, and the properties are 
extracted for foam density 0.57 gm/cc from Figure 3. The impact velocity of the 
steel plate is varied between 250 m/s to 750 m/s. The stress-wave propagation 
in the aluminum-foam armor is compared to armor without foam. 

Figure 6 shows the deformation of aluminum-foam layer at different time 
intervals when impacted at 500 m/s. The plastic collapse and densification of 
foam starts at the impact side while the rest of the material remains elastic. It 
takes about 30 |xs for the complete densification of 12.7-mm aluminum foam. 
The stress-wave propagation in the individual layers is a function of material 
properties and layer thickness. The dynamic response at midthickness of the 
individual layers is presented in Figure 7 as a function of time (aluminum-foam 
thickness = 12.7 mm, impact velocity = 500 m/s). Through-thickness normal 
stress is made nondimensional by the maximum compressive stress developed in 
the cover layer. The first compressive pulse in the cover layer is the input to the 
system. The stress in the cover layer becomes tensile as soon as the projectile 
bounces back from the target and the rest of the response is the reverberation of 



i 

Backing 
Plate 

Al-Foam 

Ceramic 

r. 
Cover 

Impactor I .--"UTJI::::L 

Ons ions 

1 ■ iL=i-irT- :--.c~: 
1 .jr. J t-j i :±!:i 

20|o.s 

i 
30 ns 
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Table 1. Material properties used in the one-dimensional finite element model. 

Material Young's modulus, 
E,GPa 

Poisson's ratio, 
V 

Density, 
p, kg/m3 

Projectile 206.80 0.30 7850 
Cover 8.50 0.28 1783 
Ceramic 310.30 0.25 3500 
Backing Plate 8.50 0.28 1783 

E,GPa p, kg/m3 

Poisson's 
ratio of 
densified 
foam, 

V densified 

Yield 
stress, 

Oy, MPa 

Volume 
fraction of 
densified 

foam 
Vf, densified 

Modulus 
of 

densified 
foam 

Edensified, GPa 

Aluminum 
Foam 0.177 470 0.285 241.40 0.29 68.97 



Time, micro-seconds. 

Figure 7.  Dynamic response of individual layers, aluminum-foam thickness = 12.7-mm, 
impact velocity = 500 m/s. 

the input pulse and the interaction with the adjacent ceramic layer. The input 
pulse in the cover layer is transmitted to the ceramic layer through the 
cover/ceramic interface. The transmission and reflection coefficients can be 
estimated using one-dimensional wave propagation theory [15]. The response of 
the aluminum foam layer and the backing plate is presented with a coordinate 
shift in stress. The transmission and reflection coefficients in the ceramic-foam 
interface are 0.0173 and -0.9827 respectively, which means that most of the 
compressive stress pulse will be reflected as tensile stress in the ceramic-foam 
interface before the collapse of aluminum foam. After the collapse and 
densification of aluminum foam layer (time > 26 us), significant stress rise and 
propagation is observed in both the aluminum foam and backing plate. The 
maximum amplitude of the stress pulse transferred into the backing plate is 
about 25% of the input in the cover layer. 

The response of aluminum foam (impact velocity = 500 m/s) as a function of 
layer thickness, I, is shown in Figure 8. The computation for foam thickness 
12.7 mm and 19.1 mm was terminated at 50 us and for 25.4 mm at 65 us. The 
peak stresses are almost 25% of the input to the cover layer for all foam 
thicknesses. The stresses, however, become increasingly oscillatory with 
increased foam thickness. The arrival time of the stress pulse in the foam layer 
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increases as a direct consequence of increased foam thickness and is related with 
the stress arrival at the backing plate (Figure 9). The solid line represents the 
response of backing plate without any foam (Figure 9a). The stress amplitude is 
found to decrease with the increase in foam thickness. The difference in the time 
of stress arrival to the backing plate with and without foam is termed as the time 
delay and increases with foam thickness. The peaks P, Q, and R in Figure 9a 
represent stress transfer to the backing plate after complete densification of the 
foam; however, a close-up shows earlier stress pulses (p, q, and r; Figure 9b) 
before the densification of foam and is termed as elastic stress transfer. The 
elastic stress transfer is less than 1% of input to the cover for all impact velocities 
studied (Figure 10). On the other hand, the stress transfer (for impact velocities 
500 and 750 m/s) after complete foam densification linearly decreases at a rate of 
1.1%/mm of foam thickness. The time delay of stress arrival in the backing plate 
is presented in Figure 11 and is found to be increasing with foam thickness. The 
time delay of elastic pulse for all impact velocities is about 0.75 us/mm; however, 
the rate of time delay after foam densification decreases as impact velocity 
increases. These rates of delay are 2.16 and 1.42 us/mm for impact velocities 500 
and 750 m/s. At impact velocities higher than 750 m/s, the rate of delay 
approaches the rate of delay of the elastic pulse (0.75 us/mm). 
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As stated earlier, the one-dimensional stress analysis is valid at the impact 
centerline without penetration in the armor. In the real impact event, the 
penetration event follows the stress-wave propagation and the wave front is 
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nonplanar.   In order to investigate the penetration event, a quarter-symmetric 
three-dimensional model  of  aluminum foam integral  armor  impacted by 
a 20-mm FSP is developed.   The foam layer thickness is taken as 19.1 mm. 
To mimic the stress-wave experiment done by Yu et al. [11], a thin layer 
of   elastic-plastic   material   was   incorporated   in   the   model  between   the 
ceramic   and  aluminum  foam  layer.     The  initial  impact velocity  of  the 
projectile is set to 900 m/s.    The projectile and ceramic is modeled with 
MAT_PLASTIC_KINEMATIC   and   the   backing   plate   is   modeled   with 
MAT_COMPOSITE_FAILURE_SOLID material models (Table 2).    Figure 12 
shows the sequence of projectile penetration and dynamic deformation of the 
aluminum foam. The solution is terminated after 63 us because the foam cells are 
compressed down to infinitesimal thickness, and the time step required for such 
solution is so small that it takes infinite time to solve the problem.  The cross- 
sectional view of the deformed aluminum foam [11] (Figures 5[d] and 13) shows 
that the deformation pattern obtained from the numerical simulation matches 
well with the experimental observation.     The  deformation pattern of the 
aluminum-foam also suggests that if an aluminum-foam plate is placed after the 
backing plate, it could contain the dynamic deflection of the armor. 

Table 2. Material properties used in the three-dimensional finite element model. 

Material 
E,GPa V p, kg/m3 CTV, MPa 

Tangent 
modulus, 

Et, GPa 

FSP 206.91 0.285 7850 1069.1 2.0 

Cover 20.00 0.22 1783 200.0 15.0 

Ceramic 310.30 0.25 3500 3000.0 0.0 

E,GPa p, kg/m3 
Vdensified cv, MPa Vf, densified 

Jidensified/ 

GPa 

Aluminum 
Foam 0.177 470 0.285 241.40 0.29 68.97 

P/ 
kg/m3 

Modulus, 
GPa 

Poisson's 
ratio 

Shear modulus, 
GPa 

Backing Plate 1783 En 29.48 v2i 0.0085 G12 3.79 

E22 29.48 v3i 0.1145 G23 3.79 

1 E33 29.48 V32 0.1145 G31 3.79 

13 



Figure 12.    FE solution of dynamic deformation of aluminum-foam integral armor. 
Numbers indicate time in microseconds. 

Figure 13. Impact damage modes of the aluminum-foam integral armor. 
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4.   Design of Aluminum Foam Integral Armor 

Based on the stress-wave experiment of Yu et al. [11] and the numerical 
simulation presented in section 3, a test matrix has been developed (Figure 14) to 
assess the potential benefits of using metal foams in an integral armor and to 
design the next generation integral armor to satisfy the Army requirements [1]. 
Three different designs of integral armor with metal foam have been proposed. 
These designs represent unique functionality of the aluminum foams in the 
integral armor. The rubber layer of the baseline CIA (Figure 14a, Baseline) has 
been simply replaced by the aluminum foam (Figure 14b, Design 1) to eliminate 
any relative rotational degrees of freedom between ceramic and backing plate, to 
improve structural stiffness of the armor, and to attenuate the stress-wave 
propagation. The next design (Figure 14c, Design 2) includes an additional 
aluminum foam backing plate to minimize dynamic deflection. The last design 
(Figure 14d, Design 3) uses a rubber layer and a thin composite inner layer to 
distribute the load over a greater region on the metal foam. The material system 
and individual layer thickness is marked on Figure 14. All designs have the 
same areal density of 97.65 kg/m2 (20 lb/ft2) as the base-line CAV integral armor. 
The thickness of the cover layer and the ceramic layer is kept constant for all 
design cases. The foam thickness is also kept constant at 19.00 mm to minimize 
the production cost of foam panels. If rubber is used in the foam armor panels, 
the thickness is chosen to be the same as the base line. The only parameter 
varied to keep the areal density constant is the backing plate thickness. 
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Figure 14. Innovative design of aluminum-foam integral armor. 
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5.   Multistep Processing of Armor Panels 

A total of four base-line armor panels and one of each aluminum foam CIA 
configuration is manufactured using a multistep manufacturing technique. This 
method is presented in Figure 15. The composite backing plates of different 
thicknesses are processed using vacuum-assisted resin-transfer molding 
(VARTM). Details of the VARTM process can be found [16]. Plain weave S-2 
glass fabric (24 oz/yd2) with 365-mm sizing is used to make the preforms. The 
preforms are infused with vinyl ester 411-C50 resin, cured at room temperature 
and postcured at 121 °C (250 °F) for 3 hr. The S-2 glass/vinyl ester panels are 
then machined to 305- x 305-mm size. EPDM rubber sheets of the same size are 
washed with soap and water and dried, and a thin coating of LORD 7701 primer 
is applied to both sides. Closed-cell aluminum-foam panels of nominal density 
500 kg/m3 and of dimension 101.6 x 101.6 x 19.0 mm were fabricated. The foam 
panels are cleaned with distilled water and dried at room temperature. A 
solution containing 10% glycidoxy (epoxy) functional methoxy silane (Dow 
Corning® Z-6040) is prepared with deionized water. Acetic acid is added to the 
solution to maintain pH in the 3.5-4.0 range. The aluminum foam panels are 
then soaked into the silane solution and oven dried for an hour at 90 °C. 
Hexagonal ceramic tiles (AD-90) are cleaned with compressed air. 
Nonhexagonal ceramic pieces required making a 305- x 305-mm-square array of 
tiles cut from the hexagonal tiles using a slot grinder. Fishing lines are cut into 
small pieces and bonded with spray adhesive on the sides of the ceramic tile to 
ensure a gap between adjacent tiles. The next step is to bond the individual 
layers with SC-11 epoxy resin. A wooden frame is made to hold all the layers 
together. A peel ply is used to avoid contact between the wooden mold and the 
part. The backing plate is first placed on the wooden frame. A thin layer of 
epoxy resin is then evenly distributed on top. To control the bond-line thickness, 
a glass scrim cloth (0.125 mm thick) is placed on the backing plate. More resin is 
added on top of the scrim cloth. The rubber (or aluminum foam) layer is laid 
next. On top of the rubber layer, resin and scrim cloth are placed to bond the 
next layer (ceramic layer or any successive layer). Once the hand lay-up of all 
layers is completed, the assembly is placed in a vacuum bag with sufficient 
breather material to absorb the excess epoxy resin. The vacuum bag is then 
placed inside an oven and the part is cured at 121 °C (250 °F) for 2 hr and at 
149 °C (300 °F) for another 2 hr under vacuum. Once the cure is complete, the 
part is slowly cooled in the oven under vacuum. This armor plate is then 
covered with two layers of S-2 glass fabric and VARTM processed with vinyl 
ester 411-C50 resin at room temperature to obtain the cover layer. The complete 
integral armor is then postcured at 121 °C (250 °F) for 3 hr. 
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Figure 15. Multistep processing of integral armor. 

6.   Ballistic Testing of Armor Panels 

Integral armor panels are impacted with 20-mm FSP projectiles. Previous 
research suggested that a 20-mm FSP with impact velocity of 838 m/s (2,750 ft/s) 
defeats a 97.6 kg/m2 (20 lb/ft2) CIA without penetrating the backing plate [3, 4]. 
Accordingly, all the impact tests were conducted at a nominal impact velocity of 
838 m/s. 

7.   Ballistic Test Results and Discussion 

Dynamic deflection of the back face of the armor under incomplete/partial 
penetration is a critical performance metric [1]. The integral armor panels were 
mounted on a thick backing of plasticine clay before projectile impact. The 
dynamic deformation of the back face of the armor is engraved in the plasticine 
clay after the impact event. This dynamic deflection is then measured as a 
function of radial location and is presented in Figure 16 for all the tests done. 
Dynamic deflection of the baseline CIA is presented with the error bars from four 
test specimens. The curve has a bell shape with a peak at about 32 mm (1.25 in) 
and a span diameter of about 200 mm (8.0 in). Design 1 has a dynamic deflection 
contour, which shows less deflection over the whole span as compared to the 
base line. Design 2 has the least dynamic deflection among all the armor panels 
tested. Design 3 has higher deflection in the central region but less over the rest 
of the span as compared to the base line. These observations are correlated with 
the deformation and damage profile presented in Figure 16. 

17 



o 
*-< 
Ü 

Q 

E 
CO 
c 
Q 

2.0 r~ 

Inplane Distance, mm. 

-50 0 

1.5 

1.0 

e o Baseline Armor 
B- - - a Design 1 
v -v Design 2 
A A Design 3 

If y 

g 
o 
a 
CD 
Q 

Q 

Inplane Distance, in. 

Figure 16. Dynamic deflection of aluminum-foam integral armor. 

The armor panels after the ballistic impact is carefully removed from the test 
fixture such that all the fractured ceramic is contained in the impact cavity other 
than material ejected during the impact. The impact cavity is then filled with 
vinyl ester resin to hold the broken ceramic pieces in place. The armor panels are 
then sectioned, polished, and pictures are taken with a digital camera. These 
pictures are shown in Figure 16 according to the sequence described in the test 
matrix and provide us the information on deformation, damage, and relative 
comparisons between them. The base-line armor shows severe ceramic fracture, 
cover push-out, penetration through rubber, and the largest volumetric 
delamination of the backing plate. The load distribution by the fractured ceramic 
particles on the backing plate during impact is equivalent to one hexagonal tile 
area. A spring-back effect is observed in all armor panels such that the 
permanent (static) deformation of the back face is less than 10% of the maximum 
dynamic deflection. 

The overaU performance of Design 1 is better than the base line. The volumetric 
ceramic fracture is less than that of the base line. Most of the ceramic particles 
are small and medium in size, and almost no pieces are larger than the particles 
observed in the base line. This pattern of ceramic fracture appears to be superior 
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and is believed to absorb more kinetic energy of the projectile. Deformation of 
aluminum foam is of inverted bell shape and is localized. The densification of 
aluminum foam is localized under the projectile head and in a small surrounding 
area. Since there is no stress-wave transfer to the backing plate before the 
complete densification the aluminum foam is acting as a stress wave filter. The 
deformation pattern of aluminum foam suggests that the load distribution on the 
backing plate is on a much smaller area than the base line. The volumetric 
delamination of the backing plate is also less than the base line, possibly due to a 
significant decrease in premature damage due to stress wave propagation before 
the arrival of the projectile. It was demonstrated earlier (Figure 15) that the 
dynamic deflection of Design 1 is less than the base line suggesting that the 
residual kinetic energy of the projectile pushing the backing plate is less than that 
of the base line. Design 1 is thus proven to be a better armor solution than the 
base-line CIA solution with a rubber layer. 

The comparison between the Design 2 and the base line is easier if Design 2 is 
considered the same as the base line with added aluminum-foam backing. The 
deformation pattern of the cover, ceramic, and rubber layer is similar to the base 
line. However, the volumetric delamination of the backing plate is less than the 
base line and is comparable to Design 1. The deformation pattern of the 
aluminum-foam-backing plate at the composite backing/aluminum-foam 
interface is a representation of the dynamic deformation of the composite back 
face. The deformation of aluminum foam is mostly plastic. The dynamic 
deformation presented in Figure 15 is the deflection of the back face of the 
aluminum foam, which we can see from Figure 16 as a permanent deformation. 
The damage in the aluminum-foam-backing plate is distributed over the whole 
span of the armor plate. 

In Design 3, the composite inner layer served the purpose of distributing the load 
over the aluminum foam. The ceramic fracture is similar to the base line, and 
this consideration does not yield the benefit of Design 1. Even though the 
volumetric delamination is least compared to all designs, its dynamic deflection 
improved only slightly over the base-line CIA. 

8.   Summary 

The unique capability of closed-cell aluminum foam in delaying stress-wave 
propagation and attenuation is presented through experimental and numerical 
analyses. It has been found that the dynamic deformation of aluminum foam 
starts at the impact face and propagates through the thickness till complete 
densification. The cellular structure makes elastic stress-wave propagation 
difficult. Effective stress-wave propagation through aluminum foam only occurs 
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after complete densification. If the foam densification is partial, it can act as a 
stress wave filter. The time required for complete densification appears as a time 
delay in stress transfer to the next layer (backing plate) and is found to be a linear 
function of foam thickness. Aluminum foam is also found to reduce the 
amplitude of the stress pulse transferred to the backing plate. Based on the 
experimental and numerical stress-wave propagation results, three novel, 
aluminum-foam, integral armor designs have been evaluated. 

Various CIA panels have been ballistically tested under 20-mm FSP impact to 
assess the associated damage of base-line and aluminum-foam integral armor. 
The relative study between three different aluminum foam armor designs and 
their comparison with the base line gives insight into the performance and 
deformation behavior of this new class of aluminum-foam-based CIA. In 
comparison to the base line, Design 1 performed the best by providing better 
ceramic fracture, less cover separation, localized aluminum-foam deformation, 
less dynamic deflection, and less volumetric delamination of the backing plate. 
The superior performance of this novel, aluminum-foam, integral armor is a step 
forward to lighter and more damage-tolerant CIA for the next generation of 
armored vehicles. 
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